Platform Filters
Choose a label to narrow down the articles.

Modeling

Import and Export Data

Data Integration

Application Lifecycle Management

Dashboard

theplanual

The definitive set of standards for Anaplan model building.

Read It

Share a Best Practice

Share what you know. Contribute your best practices and Anaplan expertise using our Contributor's Toolkit.

Contribute

Let's talk about it

Discuss what you learned from these best practices and your own experiences in the Forums.

Visit Forums
PLANS is the new standard for Anaplan modeling—“the way we model.” This covers more than just the formulas and includes and evolves existing best practices around user experience and data hubs. It is a set of rules on the structure and detailed design of Anaplan models. This set of rules will provide both a clear route to good model design for the individual Anaplanner and common guidance on which Anaplanners and reviewers can rely when passing models amongst themselves.  In defining the standard, everything we do will consider or be based around: Performance – Use the correct structures and formula to optimize the Hyperblock Logical – Build the models and formula more logically – See D.I.S.C.O. below Auditable – Break up the formula for better understanding, performance, and maintainability Necessary – Don’t duplicate expressions. Store and calculate data and attributes once and reference them many times. Don't have calculations on more dimensions than needed Sustainable – Build with the future in mind, thinking about process cycles and updates        The standards will be based around three axes: Performance - How do the structures and formula impact the performance of the system? Usability/Auditability - Is the user able to understand how to interact with the functionality? Sustainability - Can the solution be easily maintained by model builders and support? We will define the techniques to use that balance on the three areas to ensure the optimal design of Anaplan models and architecture.       D.I.S.C.O As part of model and module design, we recommend categorizing modules as follows: Data – Data hubs, transactional modules, source data; reference everywhere Inputs – Design for user entry, minimize the mix of calculations and outputs System – Time management, filters, list attributes modules, mappings, etc.; reference everywhere Calculations – Optimize for performance (turn summaries off, combine structures) Outputs -  Reporting modules, minimize data flow out   Why build this way?   Performance Fewer repeated calculations Optimized structures and formulas Logical Data and calculations reside in logical places Model data flows can be easily understood Auditable Model structure can be easily understood Simplified formula (no need for complex expressions) Necessary Formulas and structures are not repeated Data is stored and calculated once, referenced many times, leading to efficient calculations Sustainable Models can be adapted and maintained more easily Expansion and scaling simplified     Recommended Content: Performance Dimension Order Formula Optimization in Anaplan Formula Structure for Performance The Truth About Sparsity: Part 1 The Truth About Sparsity: Part 2 Data Hubs: Purpose and Peak Performance Logical Best Practices for Module Design Data Hubs: Purpose and Peak Performance Auditable Formula Structure for Performance Necessary Reduce Calculations for Better Performance Formula Optimization in Anaplan Sustainable Dynamic Cell Access Tips and Tricks Dynamic Cell Access - Learning App Personal Dashboards Tips and Tricks Time Range Application Ask Me Anything (AMA) sessions The Planual The Planual Rises
View full article
What happens to History when I delete a user from a workspace?
View full article
How do we keep our users in the Anaplan platform to do their work which requires a high level of advanced customization, faster and more easily than their previous Excel environment? The solution is called “Smart Filters”. Check it out !
View full article
Filters can be very useful in model building and are widely used, but they can come at the expense of performance—often very visible to users through their use on dashboards. Performance can also hit imports and exports, which in turn may lead to the blocking of other activity, causing a poor perception of the model. There are some very simple guidelines to design well-performing filters: Using a Single Boolean Filter on a Line Item That Does Not Have Time or Versions Applied and Does Not Have a Summary Is Fastest Try to create a Boolean line item that incorporates all the filter criteria you want to apply. This allows you to re-use the line item and combine a series of Boolean line items into a single Boolean for use in the filter. For example, you may want to filter on three data points: Volume, Product Category, and Active Status. Volume is numeric, Product Category is a list formatted line item matching a user selection, and Active Status is a Boolean. Create a line item called Filter with the following formula: Volume > Min Vol AND Product Cat = User Selection.Category AND Active Status Here’s a very simple example module to demonstrate this: A Filter line item is added to represent all the filters we need on the view. Only the Filter line needs to be dimensioned by Users. A User Selection module dimension only by Users is created to capture user-specific filter choices: Here’s the data before we apply the filter:  Here's the data with the filter applied: A best practice suggestion would be to create a filter module and line items for each filter part. You may want other filters and you can then combine each filter as needed from this system module. This should reduce repetition and give you control over the filters to ensure they can all be Boolean. What Can Make a Filter Slow? The Biggest Performance Hit for Filters Is When Nesting Dimensions on Rows. The performance loss is significantly increased by the number of nested dimensions and the number of levels they contain. With a flat list versus nested dimensions (filtering on the same number of items) the nested filter will be slower. This was tested with a 10,000,000 list versus 2 lists of 10 and 1,000,000 items as nested rows; the nested dimension filter was 40% slower. Filtering on Line Items With a Line Item Summary Will Be Slow. A numeric filter on 10,000,000 items can take less than a second, but with a summary will take at least five seconds. Multiple Filters Will Increase Time. This is especially significant if any of the preceding filters do not lower the load because they will take additional time to evaluate. If you do use multiple filter conditions, try to order them so the most effective filters are first. If a filter doesn’t often match on anything, evaluate whether it's even needed. Hidden Levels Act as a Filter. If you hide levels on a composite list, this acts like a filter before any other filter is applied. The hiding does take time to process and will impact more depending on the number of levels and the size of the list. Avoid Nested Rows for Export Views Using nested rows can be a useful way to filter a complex set of data for export, but, as discussed above, the filter performance here can be poor. The best way around this is to pivot the dimensions so there is only one dimension on rows and use the Tabular Multi Column export option with a Filter Row based on Boolean option. Some extra filter tips include the following:  Filter duration will affect saved views used in imports, so check the saved view open time to see the impact. This view open time will be on every use of the view, including imports or exports. If you need to filter on a specific list, create a subset of those items and create a new module dimensioned by the subset to view that data.
View full article
Learn how to organize your model into logical parts to give you a  well-designed model that is easy to follow, understand and amend at a later date
View full article
The Planual provides a systematic set of standards for model building on the Anaplan platform. The rules in it are designed produce the most efficient, usable, and scalable Anaplan models, while dramatically increasing performance for models in all contexts. We highly recommend that all model builders familiarize themselves with these standards, and start incorporating them into their model-building practices. (The results will be significant!) Feel free to read from top to bottom to see how the rules fit together, or feel free to access only the rules that are most applicable to your specific application. For many rules, we have included links to additional rules and relevant articles in Community! The Planual is an evolving document, and leverages years of experience and experimentation from internal Anaplan builders, customers, partners, and Master Anplanners. We welcome all feedback and suggestions! Having trouble viewing the The Planual below? Click here to download a copy.
View full article
The process of designing a model will help you: Understand the customer’s problem more completely. Bring to light any incorrect assumptions you may have made, allowing for correction before building begins. Provide the big-picture view for building. (If you were working on an assembly line building fenders, wouldn’t it be helpful to see what the entire car looked like?) Table of Contents:   Understand the Requirements and the Customer’s Technical Ecosystem when Designing a Model When you begin a project, gather information and requirements using a number of tools. These include: Statement of Work (SOW): Definition of the project scope and project objectives/high-level requirements. Project Manifesto: Goal of the project – big-picture view of what needs to be accomplished. IT ecosystem: Which systems will provide data to the model and which systems will receive data from the model? What is the Anaplan piece of the ecosystem? Current business process: If the current process isn’t working, it needs to be fixed before design can start. Business logic: What key pieces of business logic will be included in the model? Is a distributed model needed? High user concurrency. Security where the need is a separate model. Regional differences that are better handled by a separate model. Is the organization using ALM, requiring split or similar models to effectively manage development, testing, deployment, and maintenance of applications? (This functionality requires a premium subscription or above.) User stories: These have been written by the client—more specifically, by the subject matter experts (SMEs) who will be using the model. Why do this step? To solve a problem, you must completely understand the current situation. Performing this step provides this information and the first steps toward the solution. Results of this step: Understand the goal of the project. Know the organizational structure and reporting relationships (hierarchies). Know where data is coming from and have an idea of how much data clean-up might be needed. If any of the data is organized into categories (for example, product families) or what data relationships exist that need to be carried through to the model (for example, salespeople only sell certain products). What lists currently exist and where are they are housed. Know which systems the model will either import from or export to. Know what security measures are expected. Know what time and version settings are needed. Document the User Experience Front-to-back design has been identified as the preferred method for model design. This approach puts the focus on the end-user experience. We want that experience to align with the process so users can easily adapt to the model. During this step focus on: User roles. Who are the users? Identifying the business process that will be done in Anaplan. Reviewing and documenting the process for each role. The main steps. If available, utilize user stories to map the process. You can document this in any way that works for you. Here is a step-by-step process you can try: What are the start and end-points of the process? What is the result or output of the process? What does each role need to see/do in the process? What are the process inputs and where do they come from? What are the activities the user needs to engage in? Verb/object—approve request, enter sales amount, etc. Do not organize during this step. Use post-its to capture them. Take the activities from step 4 and put them in the correct sequence. Are there different roles for any of these activities? If no, continue with step 8. If yes, assign a role to each activity. Transcribe process using PowerPoint ®  or Lucid charts. If there are multiple roles, use swim lanes to identify the roles. Check with SMEs to ensure accuracy. Once the user process has been mapped out, do a high-level design of the dashboards. Include: Information needed. What data does the user need to see? What the user is expected to do or decisions that the user makes. Share the dashboards with the SMEs. Does the process flow align? Why do this step?  This is probably the most important step in the model-design process. It may seem as though it is too early to think about the user experience, but ultimately the information or data that the user needs to make a good business decision is what drives the entire structure of the model. On some projects, you may be working with a project manager or a business consultant to flesh out the business process for the user. You may have user stories, or it may be that you are working on design earlier in the process and the user stories haven’t been written. In any case, identify the user roles, the business process that will be completed in Anaplan, and create a high-level design of the dashboards. Verify those dashboards with the users to ensure that you have the correct starting point for the next step. Results of this step: List of user roles. Process steps for each user role. High-level dashboard design for each user role. Use the Designed Dashboards to Determine What Output Modules are Necessary Here are some questions to help you think through the definition of your output modules: What information (and in what format) does the user need to make a decision? If the dashboard is for reporting purposes, what information is required? If the module is to be used to add data, what data will be added and how will it be used? Are there modules that will serve to move data to another system? What data and in what format is necessary? Why do this step? These modules are necessary for supporting the dashboards or exporting to another system. This is what should guide your design—all of the inputs and drivers added to the design are added with the purpose of providing these output modules with the information needed for the dashboards or export. Results of this step: List of outputs and desired format needed for each dashboard. Determine What Modules are Needed to Transform Inputs to the Data Needed for Outputs Typically, the data at the input stage requires some transformation. This is where business rules, logic, and/or formulas come into play: Some modules will be used to translate data from the data hub. Data is imported into the data hub without properties, and modules are used to import the properties. Reconciliation of items takes place before importing the data into the spoke model. These are driver modules that include business logic, rules.  Why do this step?  Your model must translate data from the input to what is needed for the output.  Results of this step: Business rules/calculations needed. Create a Model Schema You can whiteboard your schema, but at some point in your design process, your schema must be captured in an electronic format. It is one of the required pieces of documentation for the project and is also used during the Model Design Check-in, where a peer checks over your model and provides feedback.  Identify the inputs, outputs, and drivers for each functional area. Identify the lists used in each functional area. Show the data flow between the functional areas. Identify time and versions where appropriate. Why do this step?   It is required as part of The Anaplan Way process. You will build your model design skills by participating in a Model Design Check-in, which allows you to talk through the tougher parts of design with a peer. More importantly, designing your model using a schema means that you must think through all of the information you have about the current situation, how it all ties together, and how you will get to that experience that meets the exact needs of the end-user without fuss or bother.  Result of this step: A model schema that provides the big-picture view of the solution. It should include imports from other systems or flat files, the modules or functional areas that are needed to take the data from current state to what is needed to support the dashboards that were identified in Step 2. Time and versions should be noted where required. Include the lists that will be used in the functional areas/modules.  Your schema will be used to communicate your design to the customer, model builders, and others. While you do not need to include calculations and business logic in the schema, it is important that you understand the state of the data going into a module, the changes or calculations that are performed in the module and the state of the data leaving the module, so that you can effectively explain the schema to others. For more information, check out 351 Schemas. This 10-to-15-minute course provides basic information about creating a model schema. Verify That the Schema Aligns with Basic Design Principles When your schema is complete, give it a final check to ensure: It is simple. “Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius — and a lot of courage to move in the opposite direction.”  ― Ernst F. Schumacher “Design should be easy in the sense that every step should be obviously and clearly identifiable. Simplify elements to make change simple so you can manage the technical risk.” — Kent Beck The model aligns with the manifesto. The business process is defined and works well within the model.
View full article
Learn how small changes can lead to dramtic improvements in model calculations
View full article
Overview The following is a g uide for the new  Statistical Forecasting Calculation Engine Models (monthly and weekly).  It includes enablement videos, practice data import exercise, model documentation, and specific steps when using the model for implementations .  1. Enablement Videos & Practice Exercise # Item Details Link 1a Intro and Overview Video Model overview and review of new key features. Video Below 1b Initial Model & Data Import Steps Steps on how to setup model, product hierarchy, customer list and multi-level forecast analysis.  Video Below  1c Practice Exercise—Import data to setup stat forecast Two sets of load files included to practice setup for single level product set or multi-level product set w/ customers, product and brand level.  Start on "Initial App Setup" dashboard and load   either Single OR Multi Level files   into model, and use Import video as guide if needed.  .Zip File Attached  2. Documentation  # Item Details Link 2a Lucidchart Process Maps Lucidchart Process Map document includes High-Level process flow for end-user navigation and detailed tabs for each section.  **Details & links also on "Training & Enablement" dashboard. Process Maps  2b High-Level Process Map PDF High-level process map PDF format. Attached 2c Forecast Methods PDFs High-level version with forecast algorithms list and overview. Detailed version which includes a slide for each forecast method, m ethod overview, advantages/disadvantages, equation and graph example output.  **These slides are also included on "Forecast Methods Overview & Formulas" dashboard.   Attached 3. Implementation Specifics # Item Details 3a Training & Enablement Dashboard Training & Enablement dashboard contains details on process map navigation.  3b Initial Model Setup  Initial Setup: current model staged with chocolate data from data hub, execute CLEAR MODEL action prior to loading customer-specific data. 3c Changing Model Time Scale— align Native & Dynamic Time Settings If a Time Settings change is required, need to review Initial App Setup dashboard to align Native Time with Dynamic Time setup in model.   3d Monthly Update Process After initial setup, use Monthly Data History Upload dashboard to update prior period actuals and settings . 3e Single Level vs. Multi-Level Forecast Setup Two implementation options & when to use:  Single Level Forecast:  Forecast at one level of product hierarchy (i.e. all stat forecasts calculated at Item level). Most use cases will leverage single level forecast setup. Multi-Level Forecast : Ability to forecast at different levels of the product hierarchy (i.e. Top Item | Customers, Item and Brand level can all have stat forecast generated). This requires a complex forecast reconciliation process, review "Multi-Level Forecast Overview" dashboard if this process is needed.   3f Troubleshooting Tips Follow troubleshooting tips on Training & Enablement dashboard if having issues with stat forecast generating before reaching out for support.  3g Model Notes & Documentation Module Notes—includes DISCO classification and module purpose.   3h "Do Not Modify" Items Module notes contain DO NOT MODIFY for items that should not be changed during the implementation process.  3i User Roles & Selective Access Demo, Demand Planner, Demand Planning Manager ro les can be adjusted  After Selective Access process run on Flat List Management dashboard; then users can be given access to certain product groups/brands etc. 3j Batch Processing Details on daily batch processing and how to prepare a roadmap of your batch processes – files, queries, import actions/processes in Anaplan (see attachment). 4. Videos Intro & Model Intro and Overview Video. Data Import and Setup Steps.  5. Model Download Links Monthly Statistical Forecasting Calculation Engine Weekly Statistical Forecasting Calculation Engine
View full article
You may have heard about a model called a data hub, but perhaps you aren’t confident that you understand the fundamentals, primary functions, or considerations when architecting one. There are three main advantages to incorporating a data hub: Single source of truth: Stores all transactional data from the source system. Data validations: Ensures all data is correct and valid before the data gets to the spoke model(s). Performance: It is always faster to load data from a model rather than a file. Additionally, the administrator can ensure the correct granularity of data in the spoke model(s) when using a data hub. For example, the source system may only contain transactional data at the daily level, but the planners may need the data aggregated to the month. The data hub can summarize the data and export only the data needed. The following information is designed to further define a data hub and support you in your journey of building your own. Table of Contents Definition of the Data Hub First, we need to define what a data hub is. This can be split into four sections: Use cases: The data hub should be the first model built, whether you have a single use or multiple use cases. The data should be automatically refreshed on a schedule, whether it is nightly, weekly, monthly, etc., from the source system—often an Enterprise Data Warehouse (EDW). All modules and views that create hierarchies or lists should be stored in the data hub, which enables your models in having one version of truth, as well as reducing the duplication of data. Model connectivity: Anaplan Connect , one of our 3 rd party vendors (Informatica Cloud, Dell Boomi, Mulesoft, or SnapLogic), or our REST API can be used to automate the loading of data to the data hub from the source system, as well as transferring data from the data hub to the spoke model(s). Additionally, transitional data should not be loaded directly into the spoke module, especially if there is a large volume of data. Functions: Often, simple ETL (Extract, Transform, and Load) functions can be utilized within your data hub to transform the data for the spoke model(s). This is helpful when consolidating data from multiple sources where you have different “codes” and need a mapping module to ensure the correct data gets mapped correctly. Team: The management of the data hub should have a designated team of experts who understand what data is stored in the data hub (to ensure duplication doesn’t happen), as well as the how and when the data gets loaded. Anaplan Architecture with a Data Hub There are several ways your Anaplan architecture could look, depending on the number of workspaces you currently have and the type of security your company requires. The following are illustrations of common architectures. Master Hub Model: Across Workspaces The most common, and recommended, architecture is when the data hub is in its own workspace. Not only does this have the advantage of not interfering with the other models, but it also adds an additional security layer, with a segregation of duties. In this view, the Anaplan Workspace Admin(s) can limit the access to the data hub workspace to only the people who require it. Master Hub Model: Within a Workspace The simplest depiction is where your data hub is within the same workspace as your spoke models. While this can be accomplished, it is not best practice as there is no segregation of duties and there is a possibility, upon heavy loads from the source system, of performance issues. Additionally, when adding users, the Anaplan Workspace Administrator (Admin) would need to ensure users don’t have access to the data hub, as well as any users of the data hub not having access to the spoke models Multiple Data Hubs Finally, the data hub doesn’t necessarily have to be the only model in the workspace. You can have additional data hubs, if needed. Factors to Consider When Implementing a Data Hub There are six main elements to think about when architecting a data hub: User stories. Source systems. Lists. Modules. Data validation. Exporting data to spoke model(s). User Stories One of the cornerstones of The Anaplan Way is data (process, model, and deployment being the others), which is critical to all implementations. You will need to know what data is needed for a certain use case. Consider the following, common, data questions that need to be answered in order to be successful: What granularity of the data is needed? How much history is needed? How much history do you have? Does the source system only have transactional data, but the use case needs the data at the month level? Can the source system do the aggregation for you? After all data questions have been answered, shift your focus to the source system and consider the following: Consider the source system. Where is the data coming from? What is the source system, and is it a trusted environment? Is it Excel? Typically, you should stay away from Excel as the “source” because Excel cannot be audited. Define the data source owners. Who has access to this data? Who is preparing it? Are they part of the project? These are often-overlooked questions that are critical to success. Ideally, the data source owners need to be part of the project from the start to understand the file specifications and prepare the initial load of the data, as well as towards the end of the project to do a final load of the data. Define file specifications. How many files will be needed? Typically, you will need master data, as well as transactional data. Instead of having one file with all of this data, determine if the data can be split between different files (one for transactional, one for the unique members of the master data). It will be better for Anaplan (for performance reasons) to split these to reduce warnings during the data load process. Analyze the data. Understand what makes each record unique (date/period and transactional amounts should not be part of this), and make sure the data owners don’t give you everything (Select * From Employee) when you only need five columns. Remember, it is better to ask for additional columns midway through the project than getting all columns in the beginning and only using a select amount. Consider custom codes in the source system. Find more on this in the transactional lists section. This is a great trick for transactional data. After you have analyzed the data to understand what makes each record/row unique, concatenate the “codes” of the metadata into one transactional code, but remember, you will need to be under the 60-character threshold. Define the schedule. When is the data available? Is the data on a certain schedule? What is the schedule required with this use case? Determine the ETL medium to be used. Will Anaplan Connect be sufficient, will one of our 3 rd parties be used, or will a more custom application be needed, such as REST API? Does your company already have this experience inhouse, or will training be required? These will need to be factored into all data stories. Transactional Usually, the largest lists are those containing transactional data. There can be millions of transactional ID’s with several list properties defined. First, properties should not be defined on a transactional list (or any list, except for Display Name, as they do get accounted for in the workspace memory). Secondly, instead of loading metadata to list properties (Cost Center and Account as properties), try to figure out a way to incorporate them into the code. If the transactional data is defining a transactional amount at the intersection of Cost Center and Account for a particular month, attempt to use the code of the Cost Center and the code of the Account concatenated together (0100_57000). Not only will this decrease your list size, but it will also create a healthier model. In the below example, the model builder did not create a custom code, but rather used a combination of properties to make the record unique, which included the date/period, as well as the transactional amount. Notice the original number of records vs. the number of records after a custom code was created. By incorporating the date/time period, as well as the transactional amount, it inflated the list size exponentially based on the number of years that were loaded. Doing this not only caused the model to be bigger, but also caused poor model opening performance.  See the Appendix for a simple worked example to explain further. Learn more about sparsity in the two-part series The Truth about Sparsity: Part 1 and The Truth About Sparsity: Part 2 . Flat Lists Similar to transactional lists, flat lists are not part of a hierarchy and are a series of records grouped in a list, like Products, Companies, Cost Centers, or Employees. These are your “legends” or “anchor” for all metadata about this unique record. Again, the only property that should be defined is a Display Name, if needed. It is best practice, from a model builders’ perspective, to suffix the name with “Flat” or “- Flat”. This helps identify whether the list is part of a hierarchy or flat list (Employee – Flat, Cost Center – Flat, Product – Flat). These lists can be used for data validation, which will be described later in this article. Modules Ideally, you should have three types of modules in the data hub: Transactional: A Transactional module will store the transactional data by the time series, whether that be by day, week, month, quarter, or year. The only data, or line items, should be transactional data. No other line items should be defined. Additionally, to keep the size down, make sure the summaries on the line items are turned off, or None, as there is no reason to sum the data within the module. System: System (SYS) modules, or the “S” in DISCO , do not have time associated with them and should only be dimensionalized by the same list (Employee Flat, Cost Center Flat, Product Flat). These modules store the metadata or attributes about the list item that doesn’t change over time, for example the employee’s start date. Another example of a SYS module would be any kind of mapping that is required, whether it be SYS Time Filter module or a mapping from one source system to another. Export modules: If the data from the source system is being loaded at a lower granularity than needed in the spoke model(s), export modules can aggregate the data to the specified need (month, quarter, or year level), which will lead to more efficient data load performance to the spoke model(s). Additionally, it is better to only load the granularity of data needed instead of loading all data to the spoke model, but only using a portion of it. Loading Data vs. Using Formula’s in SYS Modules If you can devise a custom code where all of the attributes of the data are accounted for, you can greatly increase the performance of your data load, especially on very large data volumes. It is actually faster to use formulas to derive the data from the custom code than it is to load the data. Why? A couple of reasons. First, when data is loaded, the load is triggering the change log, and every change is being recorded in the model history . Second, loading data to another module is an additional action. If you didn’t need that action, you would save processing time. In the example below, the exact same data was loaded four different ways: Import Properties to a List: A list was created with all attributes, including the transactional data, and was loaded to list properties (not best practice and against DISCO). Import to List, Attribute, and Trans: A list was created, the transactional data was loaded to a transactional module, and all of the attributes were loaded to a SYS Attribute module. Import to List, Trans, Calculate Attribute: A list was created, the transactional data was loaded to a transactional module, but the SYS Attribute model was calculated using two different methods: One Line Item: Using FINDITEM() with several functions parsing out the information from within the FINDITEM(). For example, FINDITEM(Cost Center, RIGHT(LEFT(Trans Details.Code, '2nd Group’), 3)). Multiple Line Items: Parsing of the member spread across multiple line items and using FINDITEM() with only the list and code as the parameter. First, you do the parsing to get the correct piece of the code (one line item), and then the FINDITEM() of that code (2 nd line item). Load Performance Notice, the best performing data load was the last one, Import to List, Trans, Calculate Attribute (multiple line items), where the parsing out of the data was spread over multiple line items. This is due to the fact that the data load was able to take advantage of Anaplan’s multithreading capabilities. The worst performing data load occurred when data was loaded to the Attribute module because, due to the sheer size of the data, a save had to be performed. Exporting to Spoke Models One of the most important concepts to remember when exporting data is to use a view from a module. Lists should not be exported because you lose control over what you export. It is either all or nothing. By using views, you can employ a filter (should always be a Boolean) to render exactly which data needs to be exported. If you need more than one filter, combine both into one line item and use that line as the filter. You will have much better performance if you are only using one Boolean line item as a filter vs. having multiple filters defined. Another important concept to remember is to only export detailed information, as there is no reason to export parent information (quarter, year, etc.). Not only will you get warnings when exporting parent information, but the performance of the export will decrease because the system will have to create a debug log. The goal is to make sure a debug log is not created, all green checks, so if there ever is an issue, you will know it truly is an issue that needs attention. Line items in the data hub formatted as text should not be exported as text, but actually as list formatted line items in the spoke model (text->list formatted line item). The goal is to reduce the number of text formatted line items in the spoke model. Some say they need to do validation in the spoke model, therefore they need to import the data as text. Actually, this is false, because the validation should have already been done in the data hub, so there should be no need to do the validation again. Lastly, you should think about what really needs to be exported. Do you really need to export historical data that hasn’t been changed? Instead, just export the newly loaded data, or delta data. This can be accomplished by using one of two methods: From the source system, request IT to only send the updated information, not the full load every time. Additionally, request IT to create a column in the source file with a hardcoded value of “TRUE.” This will tell Anaplan which row is new or has been updated and can be used as a filter for an export. Just know, before the import of the source data gets loaded, make sure the first action within the process clears out the previous true records (set this up via a view using a filter where the view only shows members with a value of true). Utilize the current period function to only export the current period data. In the SYS Time Filter module, create a line item named Current Period with the formula CURRENTPERIODSTART(). In the export views, filter the data on this line item. Tips and Tricks A few of tips and tricks to be aware of include the following: Hierarchies should not be in the data hub. Analytical modules should not be in the data hub. Do not delete and reload lists. Data Validations Model Why should hierarchies not be in the data hub? To answer that question, you need to understand why hierarchies are used in the first place. Essentially, hierarchies are only needed to aggregate data for analytical purposes, and since users will not normally login to the data hub, the lists essentially take up space. With that said, it is perfectly okay to create the hierarchies for testing purposes to ensure your actions from the meta modules are building the hierarchies correctly, but as soon as the actions are working correctly and have been verified, you can remove the list structures from the data hub. A case can be made that certain implementations may need the hierarchies created in the data hub for validation purposes of several sources. If this is the case in your implementation, just be sure to only use the hierarchies for validation purposes. In addition to the above, there are two more reasons to not have hierarchies built in the data hub—cluttered data, and spoke models that pull data from the lists.   Data hubs need to be clean and clutter free to ensure optimal performance, which also makes it easier for the administrators to understand exactly what data is stored in the data hub. Additionally, when you have lists—especially hierarchical lists—spoke model builders will sometimes build their lists from the lists within the data hub instead of from a view. It is best practice to always build lists from views from within a module so the action can benefit from filters (there are no filters when importing from lists). Analytical modules should not be in the data hub since end users don’t normally access the data hub. There really isn’t a reason to have products by versions by time in the data hub, that belongs to the spoke model. Remember, the data hub should only be used to store data from the source system(s). Within your nightly data load process, do not delete and reload data, including the list structures. If you have a proper code, you shouldn’t need to do this. Additionally, not only does this impact the overall performance of the process (adding an additional action to delete the list, which then deletes all data associated with that list), but the process is essentially filling up the change log with the exact same data that it had before the delete. When a certain threshold is surpassed, the model will require a save, thus taking up even more time. Ultimately, you are forcing the model to re-aggregate all of the data, instead of just the new data. Lastly, if you know you will have to do a lot of transformations on your data (consolidating multiple source systems or your data is not clean), think about creating a Data Validations model.  This model’s sole purpose would be to clean the data and then feed the data to the data hub, thus keeping the transformations to a minimum in the data hub as well as keeping the data hub clean. Worked Example Use Case: Transaction Data is by Store and SKU and Month Bad Way The code for the Transaction list is a three-part code Store_SKU_Month Attributes for Store, SKU and Month are imported as Text and matched against the Store list, SKU list and Time period respectively An additional line item is needed for the Store and SKU code (for export). This is the screenshot of the bad way: Notice the repetition of the attributes. STR07 and SKU031 are repeated each month. Good Way Two data files Unique combinations of Store and SKU (two-part code) Store SKU code by month for the quantity. The transaction details are stored in a module dimensioned by Transactions The Store and SKU attributes are calculated using the “_” delimiter The quantity is stored in a module dimensioned Transactions and by month The additional line item is needed for the Store and SKU code (for export). This is a subsidiary view in the module as it is not dimensionalized by Time. These are the screenshots of the good way: Below lists out the breakdown of the model in terms of List size, Line items and the associated member usage of the various structures. The main reasons for the improvement are because lists themselves account for approximately 500b for each member and also there is repetition of the attributes per “month” in the transaction data (as mentioned above). Hopefully, this article has shed some light on data hubs, how they should be used, and what you can do to ensure they perform at their peak level. Remember, analyze the data to understand what makes the row unique and use that as the code. Every list should have a code—every list!
View full article
Overview Imports are blocking operations: To maintain a consistent view of the data, the model is locked during the import, and concurrent imports run by end-users will need to run one after the other and will block the model for everyone else. Exports are blocking for data entry while the export data is retrieved, and then the model is released. During the blocking phase, users can still navigate within the model. Rule #1  Carefully Decide If You Let End-Users Import (And Export) During Business Hours Imports executed by end-users should be carefully considered, and if possible, executed once or twice a day. Customers more easily accept model updates at scheduled hours for a predefined time—even if it takes 10+ minutes—and are frustrated when these imports are run randomly during business hours. Your first optimization is to adjust the process and run these imports by an administrator at a scheduled time, and then let the user based know about the schedule. Rule #2 Use a Saved View The first part of any import (or export) is retrieving the data. The time it takes to open the view directly affects the time of the import or export. Always import from a saved view—NEVER from the default view. And use the naming convention for easy maintenance. Ensure the view is using optimized filters with a single Boolean value per axis. Hide the line items that are not needed for import; do not bring extra columns that are not needed. If you have done all of the above, and the view is still taking time to complete, consider using the Tabular Multi Column export and filter "in the way out." This has been proven to improve some sluggish exports.  Rule #3 Mapping Objective = Zero Errors or Warning Make sure your import executes with no errors or warnings as every error takes processing time. The time to import into a medium-to-large list (>50k) is significantly reduced if no errors are to be processed. In the import definition, always map all displayed line items (source→target) or use the "ignore" setting. Don't leave any line item unmapped. Rule #4 Watch the Formulas Recalculated During the Import If your end-users encounter poor performance when clicking a button that triggers an import or a process, it is likely due to the recalculations that are triggered by the import, especially if the action creates or moves items within a hierarchy. You will likely need the help of the Anaplan Model Optimization team to identify what formulas are triggered after the import is done and to get a performance check on these formulas to identify which one takes most of the time. Usually, those fetching many cells such as SUM, LOOUKP, ANY, or FINDITEM are likely to be responsible for the performance impact. Speak to your Business Partner for more details on the Model Optimization services available to you. To solve such situations, you will need to challenge the need for recalculating the formula identified each time a user calls the action. Often, for actions such as creations, moves, assignments done in WFP or Territory Planning, many calculations used for reporting are triggered in real-time after the hierarchy is modified by the import, and are not necessarily needed by users until later in the process. The recommendation is to challenge your customer and see if these formulas can be calculated only once a day, instead of each time a user runs the action. If this is acceptable, you'll need to rearchitect your modules and/or formulas so that these heavy formulas get to run through a different process run daily by an administrator and not by each end-users. If not, you will need to look at the formulas more closely to see what improvements can be made. Remember, breaking formulas up often helps performance. Rule #5 Don't Import List Properties Importing list properties takes more time than importing these as a module line item. Review your model list impacted by imports, and look to replace list properties with module line items when possible. Use a system module to hold these for the key hierarchies, as per D.I.S.C.O. Rule #6 Get Your Data Hub Hub and spoke: Setup a data hub model, which will feed the other production models used by stakeholders. Performance benefits: It will prevent production models to be blocked by a large import from an external data source. But since data hub to production model imports will still be blocking operations, carefully filter what you import, and use the best practices rules listed above. All import, mapping/transformation modules required to prepare the data to be loaded into planning modules can now be located in a dedicated data hub model and not in the planning model. This model will then be smaller and will work more efficiently. Try and keep the transaction data history in the data hub with a specific analysis dashboard made available for end users; often, the detail is not needed for planning purposes, and holding this data in the planning model has a negative impact on size, model opening times, and performance. As a reminder of the other benefits of a data hub not linked to performance: Better structure, easier maintenance: data hub helps keep all the data organized in a central location. Better governance: Whenever possible put this Data Hub on a different workspace. That will ease the separation of duties between production models and meta-data management, at least on actual data and production lists. IT departments will love the idea to own the data hub and have no one else be an administrator in the workspace. Lower implementation costs: A data hub is a way to reduce the implementation time of new projects. Assuming IT can load the data needed by the new project in the data hub, then business users do not have to integrate with complex source systems but with the Anaplan data hub instead. Rule #7 Incremental Import/Export This can be the magic bullet in some cases. If you export on a frequent basis (daily or more) from an Anaplan model into a reporting system, or write back to the source system, or simply transfer data from one Anaplan model to another, you have ways to only import/export the data that have changed since the last export. Use a Boolean line item to identify records that have changed and only import those.
View full article
It is important to understand what Application Lifecycle Management (ALM) enables clients to do within Anaplan. In short, ALM enables clients to effectively manage the development, testing, deployment, and ongoing maintenance of applications in Anaplan. With ALM, it is possible to introduce changes without disrupting business operations by securely and efficiently managing and updating your applications with governance across different environments and quickly deploying changes to run more “what-if” scenarios in your planning cycles as you test and release development changes into production. Learn more here: Understanding model synchronization in Anaplan ALM Training on ALM is also available in the Education section 313 Application Lifecycle Management (ALM)
View full article
Dimension Order Affects Calculation Performance Ensuring consistency in the order of dimensions will help improve the performance of your models. This consistency is relevant for modules and individual line items. Why does the order matter? Anaplan creates and uses indexes to perform calculations. Each cell in a module where dimensions intersect is given an index number. Here are two simple modules dimensioned by Customer and Product. In the first module, Product comes first and Customer second, and in the second module, Customer is first and Product is second. In this model, there is a third module that calculates revenue as Prices * Volumes. Anaplan assigns indexes to the intersections in the module. Here are the index values for the two modules. Note that some of the intersections are indexed the same for both modules: Customer 1 and Product 1, Customer 2 and Product 2, and Customer 3 and Product 3, and that the remainder of the cells has a different index number. Customer 1 and Product 2 is indexed with the value of 4 in the top module and the value of 2 in the bottom module. The calculation is Revenue = Price * Volume. To run the calculation, Anaplan performs the following operations by matching the index values from the two modules. Since the index values are not aligned, the processor scans the index values to find a match before performing the calculation. When the dimensions in the module are reordered, these are the index values: The index values for each of the modules are now aligned. As the line-items of the same dimensional structure have an identical layout, the data is laid out linearly in memory. The calculation process accesses memory in a completely linear and predictable way. Anaplan’s microprocessors and memory sub-systems are optimized to recognize this pattern of access and to pre-emptively fetch the required data. How does the dimension order become different between modules? When you build a module, Anaplan uses the order that you drag the lists onto the Create Module dialog. The order is also dependent on where the lists are added. The lists that you add to the 'pages' area are first, then the lists that you add to the 'rows' area, and finally the lists added to the 'columns' area. It is simple to re-order the lists and ensure consistency. Follow these steps: On the Modules pane, (Model Settings>Modules) look for lists that are out of order in the Applies To column. Click the Applies To row that you want to re-order, then click the ellipsis. In the Select Lists dialog, click OK. In the Confirm dialog, click OK. The lists will be in the order that they appear in General Lists. When you have completed checking the list order in the modules, click the Line Items tab and check the line items. Follow steps 1 through 3 to re-order the lists. Subsets and Line Item Subsets One word of caution about Subsets and Line Item subsets. In the example below, we have added a subset and a Line Item Subset to the module: The Applies To is as follows: Clicking on the ellipsis, the dimensions are re-ordered to: The general lists are listed in order first, followed by subsets and then line item subsets. You still can reorder the dimensions by double-clicking in the Applies to column and manually copying or typing the dimensions in the correct order. Largest vs. Smallest? This is the normal follow up question, and unfortunately, the answer is "it depends." Through research we have found that it all depends on the data within the module. Also, it can get very confusing if subsets are used; the Customer list might be bigger than the Products list, but if a subset of Customers is used that is smaller than Products, then what?   Also, we don't advocate ordering the lists in the General Lists setting in size order; the lists should be ordered in hierarchical order top to bottom, so, by definition, that will be smallest to largest. So our advice is be consistent. Think about how you describe the problem. Does the business talk about Customer by Product, or Products for Customers? Agree to a convention, and stick to it. Other Dimensions The calculation performance only relates to the common lists between the source(s) and the target. The order of separate lists in one or other doesn’t have any bearing on the calculation speed.
View full article
Model Load: A large and complex model such as 10B cells can take up to 10 minutes to load the first time it's in use after a period of inactivity of 60 minutes. The only way to reduce the load time is by identifying what formula takes most of the time. This requires the Anaplan L3 support (ask for a Model Opening Analysis), but you can reduce the time yourself by applying the formula best practices listed above. One other possible leverage is on list setup: Text properties on a list can increase the load times, and subsets on lists can disproportionately increase load times. It is best practice not to use List Properties but house the attributes in a System model dimensioned by the list.  See Best practice for Module design for more details. Model Save: A model will save when the amount of changes made by end-users exceeds a certain threshold. This action can take several minutes and will be a blocking operation. Administrators have no leverage on model save besides formula optimization and reducing model complexity. Using ALM and Deployed mode increases this threshold, so it is best to use Deployed mode whenever possible. Model Rollback: A model will roll back in some cases of an invalid formula, or when a model builder attempts to adjust a setting that would result in an invalid state. In some large models, the rollback takes approximately the time to open the model, and up to 10 minutes worth of accumulated changes, followed by a model save. The recommendation is to use ALM and have a DEV model which size does not exceed 500M cells, with a production list limited to a few dozen items, and have TEST and PROD models with the full size and large lists. Since no formula editing will happen in TEST or PROD, the model will never rollback after a user action. It can roll back on the DEV model but will take a few seconds only if the model is small.
View full article
Details of known issues  Challenge Recommendations Performance issues with long nested formulas Need to have a long formula on time as a result of nested intermediate calculations. If the model size does not prevent from adding extra line items, it's a better practice to create multiple intermediate line items and reduce the size of the formula, as opposed to nesting all intermediate calculations into one gigantic formula. This applies to summary formulae (SUM, LOOKUP, SELECT). Combining SUM and LOOKUP in the same line item formula can cause performance issues in some cases. If you have noticed a drop in performance after adding a combined SUM and LOOKUP to a single line item, then split it into two line items. RANKCUMULATE causes slowness A current issue with the RANKCUMULATE formula can mean that the time to open the model, including rollback, can be up to five times slower than they should be. There is currently no suitable workaround. Our recommendations are to stay within the constraints defined in Anapedia. SUM/LOOKUP with large cell count Separate formulas into different line items to reduce calculation time (fewer cells need to recalculate parts of a formula that would only affect a subset of the data). A known issue with SUM/LOOKUP combinations within a formula can lead to slow model open and calculation times, particularly if the line item has a large cell count. Example: All line items do not apply to time or versions. Y = X[SUM: R, LOOKUP: R] Y Applies to [A,B] X Applies to [A,B] R Applies to [B] list formatted [C] Recommendation: Add a new line item 'intermediate' that must have 'Applies To' set to the 'Format' of 'R' intermediate = X[SUM: R] Y = intermediate[LOOKUP: R]  This issue is currently being worked on by Development and a fix will be available in a future release Calculations are over non-common dimensions Anaplan calculates quicker if calculations are over common dimensions. Again, best seen in an example. If you have, List W, X Y = A + B Y Applies To W, X A Applies To W B Applies To W This performs slower than, Y = Intermediate Intermediate = A + B Intermediate Applies To W All other dimensions are the same as above. Similarly, you can substitute A & B above for a formula, e.g. SUM/LOOKUP calculations. Cell history truncated Currently, history generation has a time limit of 60 seconds set. The history generation is split into three stages with 1/3 of time allocated to each. The first stage is to build a list of columns required for the grid. This involves reading all the history. If this takes more than 20 seconds, then the user receives the message "history truncated after x seconds - please modify the date range," where X is how many seconds it took. No history is generated. If the first stage completes within 20 seconds, it goes on to generate the full list of history.  In the grid only the first 1000 rows are displayed; the user must Export history to get a full history. This can take significant time depending on volume.  The same steps are taken for model and cell history. The cell history is generated from loading the entire model history and searching through the history for the relevant cell information. When the model history gets too large then it is currently truncated to prevent performance issues. Unfortunately, this can make it impossible to retrieve the cell history that is needed. Make it real time when needed Do not make it real time unless it needs to be. By this we mean, do not have line items where users input data being referenced by other line items unless they have to be. A way around this could be to have users have their data input sections, which is not referenced anywhere, or as little as possible, and, say, at the end of the day when no users are in the model, run an import which would update into cells where calculations are then done. This may not always be possible if the end user needs to see resulting calculations from his inputs, but if you can limit these to just do the calculations that he needs to see and use imports during quiet times then this will still help. We see this often when not all reporting modules need to be recalculated real time. In many cases, many of these modules are good to be calculated the day after. Reduce dependencies Don't have line items that are dependent on other line items unnecessarily.This can cause Anaplan to not utilize the maximum number of calculations it can do at once. This happens where a line items formula cannot be calculated because it is waiting on results of other line items. A basic example of this can be seen with line item's A, B, and C having the formulas: A - no formula B= A C = B Here B would be calculated, and then C would be calculated after this. Whereas if the setup was: A - no formula B = A C = A Here B and C can be calculated at the same time. This also helps if line item B is not needed it can then be removed, further reducing the number of calculations and the size of the model. This needs to considered on a case-by-case basis and is a tradeoff between duplicating calculations and utilizing as many threads as possible. If line item B was referenced by a few other line items, it may indeed be quicker to have this line item. Summary calculation Summary cells often take processing time even if they are not actually recalculated because they must check all the lower level cells. Reduce summaries to ‘None’ wherever possible. This not only reduces aggregations, but also the size of the model.
View full article
Overview: A dashboard with grids that includes large lists that have been filtered and/or sorted can take time to open. The opening action can also become a blocking operation; when this happens, you'll see the blue toaster box showing "Processing....." when the dashboard is opening. This article includes some guidelines to help you avoid this situation.  Rule 1: Filter large lists by creating a Boolean line item.  Avoid the use of filters on text or non-Boolean formatted items for large lists on the dashboard. Instead, create a line item with the format type Boolean and add calculations to the line item so that the results return the same data set as the filter would. Combine multiple conditions into a single Boolean value for each axis. This is especially helpful if you implement user-based filters, where the Boolean will be by the user and by the list to be filtered. The memory footprint of a Boolean line item is 8x smaller than other types of line items. Known issue: On an existing dashboard where a saved view is being modified by replacing the filters with a Boolean line item for filtering, you must republish it to the dashboard. Simply removing the filters from the published dashboard will not improve performance. Rule 2: Use the default Sort. Use sort carefully, especially on large lists. Opening a dashboard that has a grid where a large list is sorted on a text formatted line item will likely take 10 seconds or more and may be a blocking operation. To avoid using the sort: Your list is (by default) sorted by the criteria you need. If it is not sorted, you can still make the grid usable by reducing the items using a user-based filter. Rule 3: Reduce the number of dashboard components. There are times when the dashboard includes too many components, which slows performance. Avoid horizontal scrolling and try and keep vertical scrolling to no more than three pages deep. Once you exceed these limits, consider moving the components into multiple dashboards. Doing so will help both performance and usability. Rule 4: Avoid using large lists as page selectors. If you have a large list and use it as a page selector on a dashboard, that dashboard will open slowly. It may take 10 seconds or more. The loading of the page selector takes more than 90% of the total time. Known issue: If a dashboard grid contains list formatted line items, the contents of page selector drop-downs are automatically downloaded until the size of the list meets a certain threshold; once this size is exceeded, the download happens on demand, or in other words when a user clicks the drop down. The issue is that when Anaplan requests the contents of list formatted cell drop-downs, it also requests contents of ALL other drop-downs INCLUDING page selectors. Recommendation: Limit the page selectors on medium to large lists using the following tips: a) Make the page selector available in one grid and use the synchronized paging option for all other grids and charts. No need to allow users to edit the page in every dashboard grid or chart. b) For multi-level hierarchies, consider creating a separate dashboard with multiple modules (just with the list entries) to enable the users to navigate to the desired level. They can then navigate back to the main planning dashboard. This approach also de-clutters the dashboards. c) If the dashboard elements don't require the use of the list, you should publish them from a module that doesn't contain this list. For example, floating page selectors for time or versions, or grids that are displayed as rows/columns-only should be published from modules that do not include the list. Why? The view definitions for these elements will contain all the source module's dimensions, even if they are not shown, and so will carry the overhead of populating the large page selector if it was present in the source. Rule 5: Split formatted line items into separate modules. Having many line items (that are formatted as lists) in a single module displayed on a dashboard can reduce performance as all of the lists are stored in memory (similar to Rule 4). It is better, if possible, to split the line items into separate modules. Remember from above, try not to have too many components on a dashboard; only include what the users really need and create more dashboards as needed.  
View full article
As a model builder, you have to define line item formats over and over. Using a text expander/snippet tool, you can speed up the configuration of modules. When you add a new Line Item, Anaplan sets it by default as a Number (Min Significant Digits: 4, Thousands Separator: Comma, Zero Format: Zero, etc.). You usually change it once and copy it over to other line items in the module. Snippet tools can store format definition of generic formats (numbers, text, boolean, or no data) and by a simple shortcut, paste it in the format of the desired line items.  Below is an example of a number format line item with no decimal and hyphens instead of zeros. On my Mac, I press Option + X, I type "Num..." and get a list of all Number formats I pre-defined. I press Enter to paste it. It also works if several line items were selected. The value stored for this Number format is : {"minimumSignificantDigits":-1,"decimalPlaces":0,"decimalSeparator":"FULL_STOP","groupingSeparator":"COMMA","negativeNumberNotation":"MINUS_SIGN","unitsType":"NONE","unitsDisplayType":"NONE","currencyCode":null,"customUnits":null,"zeroFormat":"HYPHEN","comparisonIncrease":"GOOD","dataType":"NUMBER"} Here is the result of a text format snippet. {"textType":"GENERAL","dataType":"TEXT"} Or a Heading line item (No Data, Style: Heading 1). ---- false {"dataType":"NONE"} - Year Model Calendar All false false {"summaryMethod":"NONE","timeSummaryMethod":"NONE","timeSummarySameAsMainSummary":true,"ratioNumeratorIdentifier":"","ratioDenominatorIdentifier":""} All Versions true false Heading1 - - - 0  This simple trick can save you a lot of clicks. While we are unable to recommend specific snippet tools, your PC or Mac may include one by default, while others are easy to locate for free or low-cost, online.
View full article
This article provides the steps needed to create a basic time filter module. This module can be used as a point of reference for time filters across all modules and dashboards within a given model. The benefits of a centralized Time Filter module include: One centralized governance of time filters. Optimization of workspace, since the filters do not need to be re-created for each view. Instead, use the Time Filter module. Conforms with the D.I.S.C.O. methodology as a 'System' module.  More on D.I.S.C.O. can be found here.   Step 1: Create a new module with two dimensions—time and line items. The example below has simple examples for Weeks Only, Months Only, Quarters Only, and Years Only. Step 2: Line items should be Boolean formatted and the time scale should be set in accordance to the scale identified in the line item name. The example below also includes filters with and without summary methods, providing additional views depending on the level of aggregation desired. Once your preliminary filters are set, your module will look something like the screenshot below.  Step 3: Use the pre-set Time Filters across various modules and dashboards. Simply click on the filters icon in the toolbar, navigate to the time tab, select your Time Filter module from the module selection screen, and select the line item of your choosing. Use multiple line items at a time to filter your module or dashboard view.  
View full article
Reducing the number of calculations will lead to quicker calculations and improve performance. However, this doesn’t mean combining all your calculations into fewer line items, as breaking calculations into smaller parts has major benefits for performance. Learn more about this in the Formula Structure article. How is it possible to reduce the number of calculations? Here are three easy methods: Turn off unnecessary Summary method calculations. Avoid formula repetition by creating modules to hold formulas that are used multiple times. Ensure that you are not including more dimensions than necessary in your calculations. Turn off Summary method calculations Model builders often include summaries in a model without fully thinking through if they are necessary. In many cases, the summaries can be eliminated. Before we get to how to eliminate them, let’s recap on how the Anaplan engine calculates. In the following example we have a Sales Volume line-item that varies by the following hierarchies: Region Hierarchy Product Hierarchy Channel Hierarchy City SKU Channel Country Product All Channels Region All Products   All Regions     This means that from the detail values at SKU, City, and Channel level, Anaplan calculates and holds all 23 of the aggregate combinations shown below—24 blocks in total. With the Summary options set to Sum, when a detailed item is amended (represented in the grey block), all the other aggregations in the hierarchies are also re-calculated. Selecting the None summary option means that no calculations happen when the detail item changes. The varying levels of hierarchies are quite often only there to ease navigation, and the roll-up calculations are not actually needed, so there may be a number of redundant calculations being performed. The native summing of Anaplan is a faster option, but if all the levels are not needed it might be better to turn off the summary calculations and use a SUM formula instead.  For example, from the structure above, let’s assume that we have a detailed calculation for SKU, City, and Channel (SALES06.Final Volume). Let’s also assume we need a summary report by Region and Product, and we have a module (REP01) and a line item (Volume) dimensioned as such. REP01.Volume = SALES06 Volume Calculation.Final Volume is replaced with REP01.Volume = SALES06.Final Volume[SUM:H01 SKU Details.Product, SUM:H02 City Details.Region] The second formula replaces the native summing in Anaplan with only the required calculations in the hierarchy. How do you know if you need the summary calculations? Look for the following: Is the calculation or module user-facing? If it is presented on a dashboard, then it is likely that the summaries will be needed. However, look at the dashboard views used. A summary module is often included on a dashboard with a detail module below; Effectively, the hierarchy sub-totals are shown in the summary module, so the detail module doesn’t need the sum or all the summary calculations. Detail to Detail Is the line item referenced by another detailed calculation line item? This is very common, and if the line item is referenced by another detailed calculation the summary option is usually not required. Check the Referenced by column and see if there is anything referencing the line item. Calculation and staging modules If you have used the D.I.S.C.O. module design, you should have calculation/staging modules. These are often not user-facing and have many detailed calculations included in them. They also often contain large cell counts, which will be reduced if the summary options are turned off. Can you have different summaries for time and lists? The default option for Time Summaries is to be the same as the lists. You may only need the totals for hierarchies, or just for the timescales. Again, look at the downstream formulas. The best practice advice is to turn off the summaries when you create a line item, particularly if the line item is within a Calculation module (from the D.I.S.C.O. design principles). Avoid Formula Repetition An optimal model will only perform a specific calculation once. Repeating the same formula expression multiple times will mean that the calculation is performed multiple times. Model builders often repeat formulas related to time and hierarchies. To avoid this, refer to the module design principles (D.I.S.C.O.) and hold all the relevant calculations in a logical place. Then, if you need the calculation, you will know where to find it, rather than add another line item in several modules to perform the same calculation. If a formula construct always starts with the same condition evaluation, evaluate it once and then refer to the result in the construct. This is especially true where the condition refers to a single dimension but is part of a line item that goes across multiple dimension intersections. A good example of this can be seen in the example below: START() <= CURRENTPERIODSTART() appears five times and similarly START() > CURRENTPERIODSTART() appears twice. To correct this, include these time-related formulas in their own module and then refer to them as needed in your modules. Remember, calculate once; reference many times! Taking a closer look at our example, not only is the condition evaluation repeated, but the dimensionality of the line items is also more than required. The calculation only changes by the  day, as per the diagram below: But the Applies To here also contains Organization, Hour Scale, and Call Center Type. Because the formula expression is contained within the line item formula, for each day the following calculations are also being performed: And, as above, it is repeated in many other line items. Sometimes model builders use the same expression multiple times within the same line item. To reduce this overcalculation, reference the expression from a more appropriate module; for example, Days of Week (dimensioned solely by day) which was shown above. The blueprint is shown below, and you can see that the two different formula expressions are now contained in two line items and will only be calculated by day; the other dimensions that are not relevant are not calculated. Substitute the expression by referencing the line items shown above. In this example, making these changes to the remaining lines in this module reduces the calculation cell count from 1.5 million to 1500. Check the Applies to for your formulas, and if there are extra dimensions, remove the formula and place it in a different module with the appropriate dimensionality .
View full article
Dynamic Cell Access (DCA) controls the access levels for line items within modules. It is simple to implement and provides modelers with a flexible way of controlling user inputs. Here are a few tips and tricks to help you implement DCA effectively. Access control modules Any line item can be controlled by any other applicable Boolean line item. To avoid confusion over which line item(s) to use, it is recommended that you add a separate functional area and create specific modules to hold the driver line items. These modules should be named appropriately (e.g. Access – Customers > Products, or Access – Time etc.). The advantage of this approach is the access driver can be used for multiple line items or modules, and the calculation logic is in one place. In most cases, you will probably want read and write access. Therefore, within each module it is recommended that you add two line items (Write? and Read?). If the logic is being set for Write?, then set the formulas for the Read? line item to NOT WRITE? (or vice-versa). It may be necessary to add multiple line items to use for different target line items, but start with this a default. Start simple You may not need to create a module that mirrors the dimensionality of the line item you wish to control. For example, if you have a line item dimensioned by customer, product, and time, and you wish to make actual months read-only, you can use an access module just dimensioned by time. Think about what dimension the control needs to apply to and create an access module accordingly. What settings do I need? There are three different states of access that can be applied: READ, WRITE, and INVISIBLE or hidden. There are two blueprint controls (read control and write control) and there are two states for a driver (TRUE or FALSE). The combination of these determines which state is applied to the line item. The following table illustrates the options: Only the read access driver is set:   Read Access Driver Driver Status True False Target Line Item READ INVISIBLE Only the write access driver is set:   Write Access Driver Driver Status True False Target Line Item WRITE INVISIBLE Both read access and write access drivers are set:   Read Access Driver Write Access Driver Driver Status True False True False Target Line Item READ INVISIBLE WRITE Revert to Read* *When both access drivers are set, the write access driver takes precedence with write access granted if the status of the write access driver is true. If the status of the write access driver is false, the cell access is then taken from the read access driver status. The settings can also be expressed in the following table:   WRITE ACCESS DRIVER TRUE FALSE NOT SET READ ACCESS DRIVER TRUE Write Read Read FALSE Write Invisible Invisible NOT SET Write Invisible Write Note: If you want to have read and write access, it is necessary to set both access drivers within the module blueprint.  Totals Think about how you want the totals to appear. When you create a Boolean line item, the default summary option is NONE. This means that if you used this access driver line item, any totals within the target would be invisible. In most cases, you will probably want the totals to be read-only, so setting the access driver line item summary to ANY will provide this setting. If you are using the Invisible setting to “hide” certain items and you do not want the end user to compute hidden values, then it is best to use the ANY setting for the access driver line item. This means that only if all values in the list are visible then the totals show; otherwise, the totals are hidden from view.
View full article